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Abstract 

Within the context of extended geminal models the concepts of charge centroids 
and charge ellipsoids of the geminal one-electron densities, and an energy decomposition 
of the intermolecular potential, are introduced as tools of analysis. The intermolecular 
potential can within this framework be written as a sum of the distortion energies of 
the subsystems and the interaction energies between the distorted subsystems, The 
interaction energy is further partitioned into a Coulombic, exchange and correlation 
contribution. Three classes of complexes are studied: hydrogen bonded systems (HI:)2, 
H2OHF, (H20)2; strongly bonded electron donor-acceptor (EDA) complexes: B HaNH 3, 
BH3CO; and weakly bonded EDA complexes: F2NH 3, C12NH 3 and C1FNH 3. The main 
results of the calculations, using basis sets consisting of [9s, 6p, 2d] (C1), [7s, 4p, 2d] 
(B, N, O, F), [4s, 2p] (H) contracted Gaussian-type functions, and the numerical models 
EXRHF3 and EXGEM7, are as follows. The bonding in these complexes is essentially 
due to a lone pair of the donor subsystems approaching the "vacant" space in the 
vicinity of a nucleus of the acceptor system. The interaction energy is therefore dominated 
by the Coulombic term. However, the sum of the distortion terms is larger than the 
magnitude of the Coulombic term. Hence, the exchange and correlation terms give a 
substantial contribution to the intermolecular potential. If the components of the 
decomposition of the potential are rescaled by using the magnitude of the interaction 
energy as the energy unit, a remarkable similarity between the three classes of complexes 
is disclosed. 

1. Introduction 

The intermolecular potential is a key concept in chemical physics. It is of 
paramount importance for such diverse phenomena as gas imperfections, molecular 
scattering cross sections, transport properties of gases, and the properties of the 
liquid and the solid state. 

There are two main theoretical problems related to the intermolecular potential. 
The first problem is a computational one. In order to obtain accurate potentials, one 
needs large basis sets and a computational model which yields a balanced description 
of  the intrasystem correlation energy. The second problem is an interpretative one. 
There is a need for concepts which help to elucidate the physical origin of the 
interaction. Furthermore, the constructed concepts should also serve as tools for 
discovering similarities and differences among Van der Waals systems. 
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There are two main classes for the calculation of intermolecular potentials: 
methods which are based on considering the interaction between the subsystems as 
a perturbation and supermolecule methods considering the interacting subsystems 
as a supermolecule. A description of these different approaches and with reference 
to the literature may be found in the monographs by Maitland et al. [1] and Hobza 
and Zahradnik [2]. Within the supermolecule class Roeggen [3-9]  has introduced 
a novel approach both for computation and analysis of intermolecular interactions. 
This approach is formulated within the framework of extended geminal models. 
These models are size extensive, they can be applied for any intersystem distance, 
and they have a conceptual structure which facilitates interpretation. For these 
models, there is a very simple energy decomposition scheme. The total electronic 
energy of the supersystem can be written as a sum of intra- and intersystem energies. 
As a consequence of this partitioning, the intermolecular potential is obtained as a 
sum of intrasystem distortion energies and intersystem energies. The intersystem 
energies can be further partitioned into Coulombic, exchange and correlation 
components. 

The purpose of the present work is to use the energy decomposition analysis 
to illuminate the differences and similarities between three classes of Van der Waals 
complexes: hydrogen bonded systems: (HF)2, H2OHF, (H20)2; strongly bonded 
electron donor-acceptor  (EDA) complexes: BH3NH3, BH3CO; and weakly bonded 
EDA complexes: F2NH3, C12NH3 and C1FNH3. 

The structure of the paper is as follows. In section 2 we give a brief account 
of the theoretical framework. Section 3 is devoted to computational details. In 
section 4 we present the results for the selected systems. 

2. The theoretical framework 

In refs. [4, 5, 9] we have given a detailed description of the theoretical approach 
adopted in this work. Accordingly, in this section we sketch only the essential 
elements of the theory needed to make our work readable. 

2.1. EXTENDED GEMINAL MODELS 

If the general extended geminal model [3] is truncated at the double-pair 
correction level, we have the following ansatz for the electronic wave function of 
a closed shell 2N-electron system: 

N N 
q eXG =  APSG +  'eK + Y_.%L. (1) 

K=I K<L 

In eq. (1), (17 ~t'psG denotes the APSG function, i.e. the antisymmetric product of 
strongly orthogonal geminals, ur' x represents a single pair correction term, and huxL 
a double pair correction term. The energy can be formally evaluated within the 
framework of the method of moments. Since, by construction, we have 
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((I)APSG I~ EXG) = 1, 

it follows that 

EF'-XC = (~APSG IH(I)ECG ) 

N N 
= EAPSG + Z ~ K  + Z 6 K L '  

K=I K<L 
where 

E APSG = ((D APSG I H~A PsG), 

(2) 

(3) 

(4) 

EK = < (I)APSG IHWx ) 

- ( A K  ~ x  nlZl\ 
-- ~ ~ eff~.~.K / ,  (5) 

eXZ, = <~APSG I HWm.) 

/(hAPSG t_tKL(,~[4] \ 
= \'*'KL [ '~eff aaKL/" (6) 

In eq. (5) Hc~-f is an effective two-electron Hamiltonian for electron pair K [5] and 
Hef KL in eq. (6) is an effective Hamiltonian for the four-electron cluster defined by 
electron pairs K and L. Furthermore, AK is the APSG geminal for electron pair K 
and mAPSG is the APSG function for the four-electron system (K, L). "*" KL 

The difficult problem within this framework is to calculate the double pair 
correction term {egL}. Previously, we have introduced different approximations 
[6, 8] for these terms, leading to different numerical models. The most sophisticated 
ones are the EXGEM7 and EXRHF3 models [8], which shall be adopted in this 
work. In the EXGEM7 model, there is at least one geminal AK which is described 
by more than one natural orbital. Geminals described by only one natural orbit, i.e. 
restricted Hartree-Fock (RHF) geminals, are localized by minimizing the Coulomb 
repulsion between the corresponding electron pairs. When all geminals {AK) are 
RHF-geminals, the corresponding model is denoted the EXRHF3 model. 

2.2. LOCALIZATION MEASURES OF THE GEMINAL ONE-ELECTRON DENSITIES 

A commonly adopted way of describing the localization of the geminals is 
by means of charge centroids. The charge centroids are a set of vectors 
which are defined on the basis of the expression for the electronic part of the 
electric dipole moment. A straightforward derivation leads to the following well- 
known relation: 
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2N 

((I)APSG [ -- ~ , n  I(I)APSG ) = -- ~ P1K(r) rd l )  
i=1 K=I " 

N f½e  " 
= - ~_, 2 X ( r ) r d  19 = - ~ 2 r  K,  (7) 

K=I K=I 

where r K is the average position, or charge centroid, of the two electrons associated 
with the geminal AK. 

Following Robb et al. [10] and Csizmadia [11], we define a measure of the 
extension of the geminal one-electron density, by means of the seond-order moments 
of the position operator, using the charge centroid as a local origin. The second- 
order moments (or variance matrix) are defined by the relations 

1 f [ ( x ; -  xK)(x's - x~)] P1K(r')dl) ", r,s ~ {1, 2, 3} (8) Mrs = ~ 

where x~ is the rth component of the charge centroid r x defined in eq. (7) and P~ 
is the one-electron density associated with the geminal AK. The factor 1/2 in front 
of the integral is due to the fact that we have equal contributions to the spatial 
density from electrons with a- and/3-spin. If we diagonalize this symmetric variance 
matrix, we obtain what we may denote as a charge ellipsoid. The eigenvalues 
{a I, a 2, a3} of the matrix (Mrs) correspond to the squares of the half-axes of the 
ellipsoid. The standard deviations in three orthogonal directions are therefore given 
by 

Ali = ~ i ,  i e {1,2,3}. (9) 

The quantities {A/i} can then be used as a measure of the extension of the geminal 
one-electron density. Furthermore, we may also use the volume of the ellipsoid as 
a single number of the extension of the geminal one-electron density: 

4Jr 
v = /~l~AtzZxt3. (10)  

3 

2.3. PARTITIONING OF THE TOTAL ELECTRONIC ENERGY AND THE INTERMOLECULAR 

POTENTIAL 

By using the localization measures introduced in subsection 2.2, a molecular 
system can be partitioned into fragments or subsystems. Electron pairs and 
nuclei localized in the same part of the physical space define the fragments (see 
figs. 3-10) .  

In some recent works, ROeggen [4] and R~eggen and Wislcfff-Nilssen [5] 
have shown that the total electronic energy, i.e. the total energy in the absence of 
nuclear motion, can, within the framework of extended geminal models, be written 
as a sum of intra- and interfragment energies: 
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EEu~eGystem -- EEXG + Enu c 

= Z g f r a g , y  + Z g f r a g , y  -frag,6. (11) 

7 7 <6 

In eq. (I I), Enuc denotes the nuclear electrostatic energy, and the summations run 
over the fragments or the distinct pairs of fragments. The key element in deriving 
eq. (I I) was the partitioning of the one-electron potential according to the formula 

V(1) = ~ vfrag'r(1). (12) 
), 

When there are no nuclei in fragment 7, vfrag'r is the zero operator. Otherwise, 

vfrag'7(l) = - - Z  zc~ (13) 
ra~ 

@ 

In eq. (13), the summation runs over the number of nuclei in the fragment and Za 
is the nuclear charge (in atomic units) of nucleus a. The partitioning is then simply 
obtained by grouping the terms associated with each fragment and each pair of 
fragments. 

The intrafragment energy can be partitioned into a kinetic, Coulombic, exchange 
and correlation contribution: 

Jtzfrag,7 ~tTfrag,y l~7'frag,y .a_ Ffrag,y 
Efrag'7 = "kin + *-'coul + ~exch " --c~rr • 

A straightforward partitioning of the interfragment energy yields 

(14) 

Efrag'y-frag'~ = ~coulK'frag'y-frag'6 + ~exch~tTfrag'y-frag'6 + ~corrb-'frag'y-frag'a ' (15) 

where the three components represent the Coulombic, exchange and correlation 
contribution to the interaction energy, respectively. 

As for the intermolecular potential U, we obtain a conceptually and physically 
very simple decomposition: 

U = E JEXG _ ~ '  Efrag,y 
--supersystem ~ isolated 

Y 

= "~ f F;ffrag,)' _ 
z_~ L~supersystem 
Y 

= Adist + Aint 

? 8  
= Z A~ist + Z {A:o ~ul + A~x6ch + A~:orr}" 

Efrag.y ~ Z Efrag'y-frag'6 
isolated j + 

y<6 

(16) 
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Y In the last equation, Adist is the distortion energy of the subsystem ~ due to the 
presence of the other subsystems. The interaction energy Ain t is simply the sum of 
the Coulombic, exchange and correlation part in eq. (16). 

In the terminology we are using in this work, there is a clear distinction 
between the intermolecular potential and the interaction energy between the subsystems. 
The intermolecular potential U is defined by the Born-Oppenheimer  approximation. 
It is the effective potential that governs the motion of the nuclei. The interaction 
energy between the subsystems is the interaction energy between the subsystems 
including both nuclei and electrons. As expressed by eq. (16), the intermolecular 
potential can be expressed in terms of the distortion energies and the interaction 
energies between the subsystems. 

2.4. REDUCTION OF THE BSSE 

In correcting for the basis set superposition error (BSSE), we follow the 
procedure described in ref. [9]. The correction scheme is as follows. As for the 
intrapair correction {eK}, we use exactly the same number of natural orbitals (NOs) 
in describing the improved geminal (AK + D~ 21) in both the isolated subsystem and 
the subsystem in the supermolecule. Since the geminal one-electron density P~1" 
(defined by AK) is localized in a restricted part of the physical space, the correlating 
orbitals defining f2~ l will also be localized in the same part of the physical spcae. 
Moreover, since in both cases the forms of the correlating orbitals are determined 
by the optimization procedure, the orbital space associated with ~21 will be almost 
identical in these two cases. The intrafragment double pair correction terms {eLK } 
could in principle be treated in an analogous way. However, numerical experience 
indicates that the actual changes in the double pair correction terms overestimate 
the changes taking place during dimer formation. For the time being, we therefore 
neglect the changes in intrasystem double pair correction terms. In future work, we 
shall eliminate this weakness of our models, as outlined in ref. [9]. 

3. Computational details 

The basis sets used in this study are constructed in the following way. For 
the chlorine atoms, we start with Huzinaga's (12s, 9p) uncontracted Gaussian-type 
functions [1 2] contracted to (7s, 5p] using contraction coefficients from atomic SCF 
calculations. The contracted set is augmented by two diffuse s-type functions and 
one set of diffuse p-type functions. The exponents of the diffuse functions are 
determined as an even-tempered extension of the original set. We add two sets of 
polarization functions. The first is appropriate for describing intra-atomic correlation 
(exponents 0.68 [13]), and the second is suitable for describing dispersion-type 
interactions (exponents 0.15 [14]). The final basis set for the chlorine atoms is then 
[9s, 6p, 2d]. The basis sets used for the first row atoms (B, C, O, F) are [7s, 4p, 2d] 
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contracted Gaussian-type functions [9,15], and the hydrogen atoms are described 
by a [4s, 2pl set [91. 

In all calculations, we are using the Beebe-Linderberg two-electron integral 
approximation [16, 17]. We select an integral threshold of a = 10 -7 a.u. Test calculations 
on the HF molecule demonstrate that by using this integral threshold, the errors in 
the calculated energy should be less than 10 -6 a.u. [17]. 

From a conceptual point of view, we should use the EXGEM model rather 
than the EXRHF model. Proper geminals, i.e. geminals with nK > 1, are uniquely 
defined and no localization is needed. However, the calculation of an APSG function 
is computationally far more demanding than solving the standard RHF equations. 
Accordingly, the EXGEM model is only used when the RHF function yields a poor 
description of the bonding in the monomers. 

It is well-known that an RHF description of the CO molecule yields the 
wrong sign of the electric dipole moment. An APSG function can eliminate this 
deficiency. By using two natural orbitals for each of the bond pair geminals, the 
RHF geminals for core electron pairs and lone pairs, we obtain an electric dipole 
moment with the correct polarity, i.e. C-aO +~. For the cNculated equilibrium distance, 
the dipole moment is 0.1356 Debye. 

The bond pair geminals in F 2, Clz and C1F are described by two natural 
orbitals, while the molecules BH3, NH3, HF and H20 are described by only RHF 
geminals in the root function. 

According to the procedure defined in subsection 2.4, we use the same number 
of NOs in describing the improved geminal (AK + ~2[~ 1) in both the isolated subsystem 
and the subsystem in the supersystem. We choose a maximum of 51 NOs for all 
subsystems involved. In the supersystem calculation, we use second-order perturbation 
theory to calculate an approximate correction term ~')~). This correction term is 
based on the full common orbital space for the supersystem. We then express ~1~) 
in terms of NOs, and pick out the selected number of NOs with the highest occupation 
numbers. This set of NOs is the subspace of the full common orbital space defining 

All intersystem double pair correction terms {e~2L )} are defined in terms of 
52 dispersion-type NOs [7,8]. The full CI corrections {sO2} are calculated in an 
orbital subspace consisting of 26 NOs. The full CI corrections correspond to only 
approximately 1% of the total intersystem correlation energy for the hydrogen 
bonded systems, and they are therelore neglected for that particular class of Van 
der Waals complexes. On the other hand, these terms yield 29.7% of the intersystem 
correlation energy for BH3NH3. 

4. Results 

In this work, we shall put forward the conjecture that the bonding in a large 
group of Van der Waals complexes is essentially due to an electron pair of one 
subsystem approaching the "vacant" space around the nucleus of another subsystem. 
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This point of view shall be supported by looking at the spatial extension of the 
geminal one-electron densities of the subsystems, and an energy decomposition 
analysis emphasizing the Coulombic interaction between the distorted subsystems. 

Throughout this work, we shall use a terminology implying that the donor 
subsystem is the one supplying the electron pair which is approaching a nucleus of 
the acceptor subsystem. 

Three groups of dimers are studied: 

(i) Strongly bonded EDA-complexes: BH3CO and BH3NH 3. 

(ii) Weakly bonded EDA-complexes: F2NH3, C12NH3 and C1FNH3. 

(iii) Hydrogen bonded systems: (HF)2, H2OHF and (H20)2. 

4.1. STRUCTURE 

The procedure for obtaining the equilibrium geometry of the dimers is the 
following. The geometry of the isolated subsystems is optimized at the EXRHF3 
or EXGEM7 level of theory. For all subsystems except BH3, the geometry of the 
subsystems in the dimers is fixed and equal to the geometry of the isolated monomers. 
For the subsystem BH 3 in the two dimers in question, we use the same bond length 
as in the optimized planar BH 3, but the bond angle HBH is chosen equal to the value 
determined by Breulet et al. I18]. The only parameters which are optimized for the 
dimers are the dimer distance for the strong and weakly bonded EDA complexes, 
and the dimer distance and two angles for the hydrogen bonded systems. The 
equilibrium structures of the eight complexes studied in this work are displayed in 
figs. 1 and 2. 

In fig. 3, we display the electronic structure of the dimer BH3CO in terms 
of charge ellipsoids and charge centroids of selected geminals. This figure clearly 
indicates that the origin of the bonding subsystems is due to the lone pair of carbon 
approaching the "vacant" space in the vicinity of the boron nucleus. The charge 
centroid of the carbon lone pair is shifted 0.26231 a.u. away from the carbon 
nucleus and towards the boron nucleus. There are smaller shifts of the oxygen lone 
pair and a-type bond pair centroids towards the boron nucleus. As for the ~r-type 
bond pair geminal, each of the GVB-type charge centroids is shifted towards the 
atomic nucleus they are associated with. The electric dipole moment of the CO 
subsystem changes from 0.0528 a.u. to 0.7090 a.u. during formation of the complex. 
The changes of the bond pair geminals of BH3 are slightly more subtle. The bond 
pair ellipsoids are bent backwards during dimerization, leaving more available 
space for the approaching carbon lone pair, the charge centroids of the bond pairs 
are slightly shifted towards the boron nucleus, and the corresponding charge ellipsoids 
expand along all three half-axes. The electric dipole moment of the borane subsystem 
changes from 0.0 a.u. to 0.2530 a.u. 

In fig. 4, we display the intersection between the xy-plane and the selected 
charge centroids of borazane. This figure makes the origin of the bonding of the 
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Fig. 2. Equilibrium structures of the weakly 
bonded EDA complexes studied in this work. 

adduct transparent. As in the BH3CO complex, the bonding is essentially due to a 
lone pair approaching the "vacant" space in the vicinity of the boron nucleus. The 
lone pair charge centroid is shifted 0.25271 a.u. away from the nitrogen nucleus and 
towards the boron nucleus. The electric dipole moment of ammonia increases from 
0.6563 a.u. to 1.3257 a.u. during formation of the complex. The changes of the 
borane subsystem are clear-cut. The charge centroids of the valence geminals are 
moving away from the boron nucleus, the charge ellipsoids are rotated away from 
the approaching ammonia subsystem and they expand. The electric dipole moment 
of borane changes from 0.0 a.u. to 0.7894 a.u. during formation of the complex. 

In figs. 5 to 7, we display the intersection between selected charge ellipsoids 
and the symmetry plane for the hydrogen bonded systems. These figures clearly 
indicate that the characteristic feature of hydrogen bonding is essentially due to a 
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E) 
B 

(a) 

(b) 
Fig. 3. Intersections between coordinate planes and selected charge ellipsoids of  
BH 3 . . .  CO. In (a), the following ellipsoids are displayed: the core pair ellipsoids of 
B, a ( B - H )  bond pair ellipsoid, tile core and lone pair ellipsoids of CO, and the two 
~-type GVB bond pair ellipsoids of CO. In (b), the intersection between a set of 7r- 
type bond pair ellipsoids and a plane containing the longest half-axis of tile ellipsoids 
and the BCO-axis is displayed. The orientation of two g-type ellipsoids with respect 
to the hydrogen atoms is displayed in (c). The geometry is the equilibrium geometry. 
Charge centroids are marked with a cross (x)  and nuclear positions with a dot (o). 

H2 H3 

Q 
B 

Fig. 4. Intersection between the xy-plane and selected charge ellipsoids 
of B H 3 . . .  NH 3. The nuclei are rotated to eclipsed configuralion, otherwise 
the geometry is equal to the equilibrium geometry. Charge centroids 
are marked with a cross (x)  and nuclear positions with a dot (o). 
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Fig. 5. Intersections between the xy-plane and 
selected charge ellipsoids of (HF)2. The geometry 
is the equilibrium geometry as determined in 
ref. [9]. Charge centroids are marked with a 
cross (x)  and nuclear positions with a dot (+). 

Fig. 6. Intersections between the xy-plane and 
selected charge ellipsoids of H 2 0 . . .  HF. The 
geometry is the equilibrium geometry as determined 
in ref. [9], Charge centroids axe marked with a 
cross (x)  and nuclear positions with a dot ( ,) .  

/ /  H3 
/ 

/ 
/ 

/ 

HI~H2 x~ i 

H4 

Fig. 7. Intersections between the xy-plane and 
selected charge ellipsoids of (H20) 2. The geometry 
is the equilibrium geometry as determined in 
ref. [9]. Charge centroids are marked with a 
cross (x)  and nuclear positions with a dot ( ,) .  
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Fig. 8. Intersection between the xy-plane and selected charge ellipsoids 
of F 2 . . .  NH 3. The hydrogen nuclei of NH 3 are rotated to eclipsed 
configuration with respect to the lone pair ellipsoids of the electron 
pair accepting fluorine nucleus, otherwise the geometry is equal to the 
equilibrium geometry as determined in this work. The bond pair of the 
fluorine molecule is described by two GVB-type orbitals. In the figure, 
each of the corresponding charge ellipsoids is displayed. Charge centroids 
are marked with a cross (×) and nuclear positions with a dot (°). 

Fig. 9. Intersection between the xy-plane and selected charge ellipsoids 
of C12. . .  NH 3. The core electron pairs of the chlorine atoms are 
represented by the smallest spherical surface enclosing the core electron 
pair ellipsoids. The hydrogen nuclei of NH3 are rotated to eclipsed 
configuration with respect to the lone pair ellipsoids of the electron 
pair accepting chlorine nucleus, otherwise the geometry is equal to the 
equilibrium geometry as determined in this work. The bond pair of the 
chlorine molecule is described by two GVB-type orbitals. In the figure, 
each of the corresponding charge ellipsoids is displayed. Charge centroids 
are marked with a cross (×) and nuclear positions with a dot (.). 

lone pair approaching a hydrogen nucleus. However, the changes of the geminal 
densities during dimerization are considerably smaller for the hydrogen bonded 
systems than for the strongly bonded EDA complexes. In (HF) 2, the shift of the 
hydrogen bond pair, i.e. the lone pair approaching the hydrogen nucleus of the 
acceptor, is only 0.02438 a.u. 

In figs. 8 to 10, we display the intersection between a coordinate plane and 
selected charge ellipsoids of the weakly bonded EDA complexes F2NH3, C12NH3 



218 I. ROeggen, Energy decomposition analysis 

Fig. 10. Intersection between the xy-plane and selected charge ellipsoids of 
H3N • C1F. The core electron pairs of the chlorine atoms are represented by 
the smallest spherical surface enclosing the core electron pair ellipsoid. The 
hydrogen nuclei of NH 3 are rotated to eclipsed configuration with respect to 
the lone pair ellipsoids of the chlorine nucleus, otherwise the geometry is 
equal to the equilibrium geometry as determined in this work. The bond pair 
of the chlorine molecule is described by two GVB-type orbitals. In the 
figure, each of the corresponding charge ellipsoids is displayed. Charge 
centroids are marked with a cross (×) and nuclear positions with a dot (,). 

and C1FNH 3. Also for these systems it makes sense to state that the bonding is 
essentially due to a lone pair approaching the "vacant" space in the vicinity of the 
a nucleus of the acceptor system. 

4.2. ENERGY DECOMPOSITION 

In table 1, we present an energy decomposition of the molecular potential 
into distortion energies of the subsystems and the components of the interaction 
energy between the distorted subsystems. Not surprisingly, the dominant terms are 
the Coulombic interaction and the distortion terms. The "driving force" of the 
bonding for all complexes is the lone pair of the donor subsystem approaching a 
nucleus of the acceptor subsystem. This leads to a large Coulombic interaction 
energy. However, there is a price to be paid. The subsystems are distorted and their 
internal energies therefore increase. We also notice that the exchange and correlation 
components of the interaction energy are of the same order of magnitude as the 
potential. 

The similarity between the three classes of complexes becomes most transparent 
if the components of the energy partitioning are expressed in terms of magnitude 
of the total interaction energy, i.e. I E(a'a~ I, as the energy unit. In table 2, the energy 
components are given as a percentage of this unit, including sign. We notice the 
remarkable result that the pattern of the rescaled energy components is more or less 
the same for the EDA complexes and hydrogen bonded systems. For both classes, 
the dominant binding component is the Coulomb interaction between the distorted 
subsystems. It represents roughly 80% of the interaction energy. Furthermore, for 
both classes the donor subsystem is the one which is the most distorted. The 
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Table  1 

Parti t ioning of  the intermolecular  potential .  1"2~ 

EDA complexes llydrogen bonded complexes 3 Weakly bonded EDA complexes 

BH3CO BH3NII 3 (HF)2 H2OHF (H20) 2 F2NH3 CI2NH3 CIFNH3 

A ~  0.199525 0.127733 0.012958 0.027261 

A ~  0.269358 0.224824 0.016781 0.040108 

A~,~ - 0.384396 - 0.334706 - 0.030072 - 0.066942 

A ~  -0 .089974  -0 .048307  - 0.004843 -0 .010349  

A~n - 0.024281 - 0.025852 - 0.002270 -0 .004590  

U - 0.029768 - 0.056308 -0 .007445  -0 .014512  

0.014313 

0.017894 

- 0.031570 

- 0.005618 

-0 .003246  

- 0.008227 

0.014075 0.107282 0.226300 

0.011404 0.064316 0.169496 

- 0.020037 - 0.132945 - 0.314220 

- 0.005880 - 0.036604 - 0.078593 

- 0.002170 - 0.011406 - 0.020139 

- 0.002608 - 0.009357 - 0.017156 

1 Atomic units. 
2 Equilibrium geometry. 
3 From the work of R0eggen [9]. 

Table  2 

Partitioning of  the intermolecular potential using the magnitude of  the total interaction energy as energy unit) 

EDA complexes Hydrogen bonded complexes 2 Weakly bonded EDA complexes 

BH3CO BH3NII3 (IIF) 2 H2OHF (H20) 2 F2NH 3 C12NH 3 C1FNH3 

A~i~ t 40.0% 31.2% 34.8% 33.3% 35.4% 50.1% 59.3% 54.8% 

Aalst 54.0% 56.0% 45.1% 49.0% 44.3% 40.6% 35.5% 41.0% 

A ~  - 7 7 . 1 %  - 8 1 . 9 %  - 8 0 . 9 %  - 8 1 . 8 %  - 7 8 . 1 %  - 7 1 . 3 %  - 7 3 . 5 %  - 7 6 . 1 %  

A~ch - 18.0% - 11.8% - 13.0% - 12.6% - 13.9% - 20.9% - 2 0 . 2 %  - 19.0% 

A ~  - 4.9% - 6.3% - 6.1% - 5.6% - 8.0% - 7.8% - 6.3% - 4.9% 

U - 6 . 0 %  - 13.8% - 2 0 . 0 %  - 17.7% - 2 0 . 3 %  - 9 . 3 %  - 5 . 2 %  - 4 . 2 %  

IE~'a~13 0.498651 0.408865 0.037185 0.081881 0.040434 0.028087 0.180956 0.412952 

1 Equilibrium geometry. 
z From the work of  Roeggen [9]. 
3 Atomic units. 

distortion energies for the donor and acceptor subsystems are in the range of 44% 
to 56% and 31% to 40%, respectively. We also notice the stable correlation fraction 
of the interaction energy, ranging from 4.9% to 8%. What then is the main difference 
between these two classes of Van der Waals complexes? It is the magnitude of the 
energy components. This is perfectly understandable. For the hydrogen bonded 
systems, the bonding electron pair is approaching a small nuclear charge. On the 
other hand, for the strongly bonded EDA complexes studied in this work, the 
bonding electron pair is approaching a larger nuclear charge which is only partly 
screened by the valence electrons. As a result, there will be a larger interaction 
between these subsystems. For the systems studied in this work, the magnitude of 
the interaction energy of a strongly bonded EDA complex is an order of magnitude 
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larger than the corresponding quantity of an hydrogen bonded system. How do the 
weakly bonded EDA complexes fit into this pattern? The dominant binding component 
is also in these complexes the Coulombic interaction. However, its relative magnitude 
is somewhat smaller, i.e. 71% to 76%. The weakly bonded EDA complexes differ 
from the two other classes by having the acceptor subsystems as the most distorted 
ones. 

As a conclusion of this analysis, we may put forward as a conjecture that the 
angular arrangement of an EDA or hydrogen bonded complex can very much be 
decided by looking at a localized representation of  the electron density of  the donor 
subsystem and the "vacant" space around the nuclei of the acceptor subsystem. 
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